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Consistent Failure Reporting in Reliable Communication Systems*

Kenneth P. Birman and Bradford B. Glade

May 19, 1993

Abstract

The difficulty of developing reliable distributed software is an impediment to applying distributed
computing technology in many settings. This paper reviews some common platforms for distributed
software development and argues that inconsistent failure reporting in communication mechanisms
represents a significant obstacle to reliability.

1 Introduction

The premise of this paper is that the communication and programming technologies offered in support of
"reliable" distributed software development should treat consistency as an important aspect of reliability,

particularly in the way that failures are reported. At present, this is not often the case: the most common
distributed computing environments report failures in ways that violate even the simplest notions of distrib-
uted consistency. We will argue that inconsistent reporting of failures is at the root of a number of forms

of inconsistent distributed behavior in contemporary distributed systems and poses a major obstacle to the

creation of robust distributed software.

The paper is structured into three major parts. Section 2 makes the notion of distributed consistency more

precise, for the case of failure reporting. Section 3 reviews existing distributed computing technologies.
showing how they can be categorized according to the degree of consistency provided. Section 4 discusses

the technical issuer raised by consistent failure reporting. The paper concludes by suggesting that by
requiring this property on a routine basis, reliable application development might be greatly simplified.

"The authors are in the Department of Computer Science, Cornell University, and were supported under DARPA/ONR grant
N00014-92-J-1866, and by grants from IBM, HP, Siemens, and GTE.



2 Consistency and failure reporting

We concern ourselves with real-world distributed systems, consisting of processes running on a collection of

machines and interacting by message passing. The failure model we will consider is one in which processes

fail by crashing, and in which the communication system can fail by delaying messages for long periods of

time. We do not consider message loss, duplication, or out-of-order delivery, because it is easy to overcome
these types of failures using sequence numbers and acknowledgement mechanisms. We do not consider
more serious failure modes (message corruption, processes that lie) because these create much more difficult

recovery situations, requiring techniques that go beyond the scope of most "realistic" systems. On the other

hand, we do consider transient failure cases, in which a machine (and the processes on it) are temporarily
unresponsive to messages, but then recover; such situations are extemely common in modem networking

environments.

It is surprisingly difficult to give a general definition of "distributed consistency" for an environment of

this sort. In a separate paper, we will explore this problem using formal methods, but for the present
purposes, we favor a less detailed approach focused on the specific question of failure reporting. Consider
the following example where we associate with each process p in the system a set of processes, alive(p),
consisting of those process that p believes to be alive and functional. Suppose that a system consists of three

processes, a, b and c, and alive(a) = {a, b, c}, alive(b) = {a, b, c} and alive(c) = {b, c}. Perhaps, a and
b are respectively the primary and backup members of a key-distribution service that has been replicated for
fault-tolerance, and c is a client of that service which believes process a has failed. Assume further that the
logic of the key distribution service is such that it requires that there be only one primary member at any

time.

Is this system state consistent? The answer to such a question depends upon the events that ensue: if process

a subsequently crashes, and process b amends its alive set to exclude a, one could argue that the system state
observed here was transitional, showing c slightly more advanced in its execution than a and b. Scenarios
such as this arise easily in asynchronous communication systems.

On the other hand, suppose that this set of states represents a final, quiescent one. Clearly, the system would
then be inconsistent: process c may now start to request keys from the backup service, which may fail to
respond (believing the primary to be operational), or if it responds, may give out incorrect keys.

From this we see that when failures are reported in a distributed system, the system may go through a period

of inconsistency before settling back into a consistent state. Our goal should be that such a consistent state
be reached, and that the degree of inconsistency prior to reaching it be limited to situations explicable by

asynchrony, but not that the membership of the system be continuously agreed upon by all processes. In
fact, continuous agreement is clearly impossible unless the system is static.

In what follows we will say that a failure reporting mechanism is accurate if it only reports real failures.
We will say that a mechanism is live if it reports real failures within finite time. And, we will say that the
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mechanism is safe if, given a time at which to examine the state of the system, all operational processes at

that time agree upon the state, operational or failed, of all other processes, and faulty processes are prevented

from communicating with operational ones. This last issue is important if a process resumes communication

after a period of faulty behavior.

This definition of safety raises leaves open an important issue, namely when the safety property should

hold. Accordingly, we will say that a system is consistent if it guarantees safety, at times determined by an

evaluation rule (regardless of whether or not it is accurate or live). In a consistent system, a process that

takes actions based on the observation of a failure can assume that all other processes with which it interacts

will observe the failure too when the time specified by the evaluation rule is reached, unless they themselves

fail first. Further, the evaluation rule should indicate the set of processes to which the a-ule should apply, in

an unambiguous way.

The most appropriate type of evaluation rule to employ depends on the intended application environment,

hence we will briefly illustrate the idea with two key examples, but will not pursue this issue at any great

length in the present paper. (A future, more theoretical, paper focuses on this question).

Stabilization consistency. The term self-stabilization is sometimes used to describe the class of concurrent

systems capable of restoring a safety property after some event perturbs it. A self-stabilization

evaluation rule would require only that if the system is quiet for a sufficiently long period of time, it

will enter a state in which safety holds.

Piece-wise consistency. A self-stabilization rule would allow us to say that a system subject to brief

periods of chaos that then settle into a safe state is consistent. For example, processes might observe

failures in different orders, and some process might even observe another process to fail and then

rejoin the system, while a different observer sees nothing at all. It is not at all clear that one would

want to allow this sort of behavior.

We will say that a system is piece-wise consistent if, for any execution, it is possible to "slice" the

execution into segments such that within any segment, the safety property holds for all possible

simultaneous states. t By simultaneous states, we mean states which the processes in the system could

have entered simultaneously, taking into account uncertainty in scheduling, relative execution speeds.

and message delays. This concept can be formalized and corresponds to the notion of a consisteni

cut, introduced by Chandy and Lamport [9].

The idea in a piece-wise definition of consistency is that the system should suddenly - instantaneously -

make transitions in which all processes switch from one membership list to a different one. In between

these transitions, all processes have identical views of which processes are operational and which

'One might ask how this can cope with network partitions, in which two groups of machines become isolated from one another,

with each considering all members of the other group faulty. In our work, as described later, we require that there be at most

one primarn partition in the system, and define the system to be consistent if the execution of the primary partition is consistent.

Meliar-Smith et. al. discuss a different approach to the same problem in 11.
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are faulty. The effect is that all operational processes see the same status transitions (operational to

failed, and back) in the same order. The transition times correspond to the points at which one would

slice up the execution. Notice that instead of meaning "instantaneous in real-time", this definition

requires only that the transition be concurrent - there could be some small skew involved, but there is

no exchange of messages during the transition. This is important because no real distributed system
could guarantee that an event, such as the declaration that some process is faulty, would be registered

at the same instant in real-time by all processes.

The advantage of a piece-wise consistent system is that if a process observes an event (a failure or

recovery), it can send messages to other processes knowing that when they receive the message,

they will already have observed the failure or recovery ývent. Moreover, if two processes both run

an algorithm thait uscs failure/recovery events as an input, the algorithm will make the same state
transitions in the same order, allowing them to cooperate implicitly, without needing to run agreement

protocols to synchronize their views of the system and the actioi.s they will take. Clearly, this
simplifies the programmer's task. Several systems that we describe later in this paper are piece-wise

consistent.

One can imagine other evaluation rules corresponding to other consistency properties. However, this paper
is intended to be practical in focus, and these two types of consistency are the ones seen in the examples we
will discuss in the most detail (Mach uses a form of stabilization consistency; Isis and Transis use piece-wise

consistency). For the same reason, since these definitions would require a substantial amount of formalism
to state rigorously, we will limit ourselves to an informal definition in the interest of brevity.

To summarize, we will say that a system is consistent if there is an evaluation rule under which safety holds
at the times when the rule indicates that one can evaluate the safety property. Although our own work uses
piece-wise consistency (in a primary partition) as its failure reporting model, the remainder of this paper will
focus primarily on the distinction between systems for which some type of consistency evaluation rule can

be defined and shown to hold, and those for which consistency simply is not achieved under any evaluation
rule.

3 Consistency in reliable communication primitives

At the time of this writing, a number of types of distributed programming environments exist, each defining
some form of reliable communication abstraction. This section starts by considering the consistency

properties of remote procedure call, or RPC, and of communication streams, as implemented by TCP,
TP4, or X.25 - well known standards for point-to-point data transmission. We then consider a number of

higher-level distributed programming environments, and observe that the consistency properties of RPC
and streams are frequently carried into the reliability attributes of more elaborate distributed programming

environments.
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3.1 Failure detection and consistency issues in RPC environments

Remote procedure call was introduced by BirreUi and Nelson in [7] as a simple, familiar abstraction for client-

server communication. As an abstraction it is elegant in the simplicity that it provides the programmer.
Unfortunately, most implementations of RPC complicate the model by introducing poor failure modes
and consistency problems. These implementations typically provide at-most-once semantics, requiring
programmers to design their applications around these weak semantics. As an example, consider a simple
service that maintains account balances. A typical remote procedure might look like

result = debit(account, value);

With a normal procedure call, the result might indicate success or failure (such as insufficient funds). In
failure instances, the programmer knows that the requested action (debiting the account) was not completed.
Common implementations of RPC however, complicate the code by introducing additional failure semantics.
Such semantics allow the call to fail even though the server may have debited the account correctly (e.g.
the reply may be repeatedly lost). All the programmer can assert upon failure is that the requested action
was executed at most once, and even this can require substantial mechanism to implement. For example.
synchronized clocks may be needed so that "old" requests can be recognized and discarded, storage may
be needed in which to save copies of results until they have been acknowledged, and applications must
be designed to accept and handle retransmitted requests, acks, and nacks long after an RPC interaction is
terminated. Furthermore, the programmer cannot assume that the service itself has failed, the program may
simply have observed a transient communication problem. So, while the RPC abstraction is appropriate
for many applications, common implementations of RPC nonetheless force the programmer to address th-
inconsistencies that failures introduce.

Failure detection in RPC systems is based on timeouts and retries, and is typically reported on a per-call basis.
This form of failure detection and reporting provides no guarantees about consistent observations ci failure.
It does, however, guarantee that if a real failure occurs and the process remains down for long enough, then
all processes communicating with the process via RPC, will eventually see RPC failures. These errors are
indistinguishable from transient communication failures. We can classify this type of failure detection as

one that is inaccurate, providing liveness but not safety. That is, rePI failures will be reported in a timely
fashion, but the same system will also report as failures transient communication problems which are not

indicative of the health of any process.

Recalling our definitions, an RPC system is not safe because when it reports failures, it may do so in

an arbitrary way that differs from observer to observer. Since such reporting has no particular reason to
eventually stabilize on an mutually observed system state, there is no reason to believe that consistency will

be achieved at all.
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3.2 Failure detection and consistency issues in streams

Connection oriented communication provides what is typically considered a reliable communication mech-
anism. As in RPC, implementations of connection oriented protocols (such as TCP/IP, DECNet, X.25.
...) have semantics that make them surprisingly unreliable when failure consistency is considered. Thif: is
often not so much the fault of the commercial vendors, but of the standards themselves: the behavior of
these protocols is mandated by the standards. To make this clear consider ait application that manages TCP
connections between objects in two processes a and b. Now suppose that one of these channels breaks due to
transient communication problems. Upon such failures, the programmer would like to take some recovery
action, perhaps by connecting to a backup process. Notice, however, that the failure of a connection does
not imply the failure of either connected process. For example, a and b could see connection 1 break
while connection 2 remains healthy (such scenarios are surprisingly common, and are normally triggered
by transient communication problems). Thus, even within a single program, code associated with one of
these connections could execute a recovery action, while code for the other connection continues to treat it
as live - an outcome that could obviously provoke bugs!

Here, we see that although TCP does provide some limited failure consistency, in the sense that if one side
sees the connection break, the other eventually will too, it is only consistent with respect to the channel
in question, and says nothing about the "health" of either connected process. The programmer can only
consider such behavior to be an unreliable indication of a process crash.

The technique that connection base- protocols use to determine when to break a connection is similar to
that of the RPC protocols. A succession of retransmissions of outgoing messages is sent until finally a timer
expires and the connection is broken. TCP can keep channels open long after the death of an endpoint if
there is no outstanding data and the "KEEPALIVE" mechanism is not being used. Thus, an application that
needs timely notification of channel problems must use the KEEPALIVE mechanism (an optional part of
the specification) or use the channel continuously. It follows that, like RPC, these common stream based
protocols are inaccurate, providing liveness but not safety with respect to failure detection.

With regard to our detailed description of consistency, the comments made about RPC can also be made about
streams. In a streams protocol, the observation of a failure does not imply that other operational processes
connected to the same endpoint will eventually observe the same event. For this reason, regardless of the
consistency evaluation rule one favors, common stream-based failure reporting schemes will not achieve
safety and hence are not consistent.

3.3 Higher level systems

One might consider these protocols to be fairly low-level and expect that the higher layers of a system make
up for their deficiencies. Interestingly, this is not often the case. We now consider a few such systems:
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UNIX, Windows NT, Chorus, DCE, and CORBA. These systems, a mix of old and new, are representative
of the communications facilities in a large majority of common systems.

Common implementations of UNIX stop at the TCP level of communications, that is the operating sys-
tem does not supply stronger communication primitives. Some implementations use the communication
facilities to provide common library calls such as gethosthyname. Often, these calls result in a remote
lookup in a common database. As a result, the call itself becomes subject to the failure semantics of the
embedded communication subsystem. This forces the programmer to deal with the weak failure semantics
of the underlying communication system even for pieces of the application that may not be directly related
to the communication needs of the application itself. This is not uniformly the case. for example, the
STREAMS communication abstraction provided by SYSTEM V UNIX allows for higher level communica-
tions protocols. In fact, in [20] the authors describe an implementation of a higher level protocol with failure
consistency within a STREAMS module. Unfortunately, the authors' concluded that the module system
was poorly suited for such protocols. Similarly, Windows NT from Microsoft offers a socket interface that
mimics the failure handling of Berkeley UNIX.

Prominent among emerging architectures for distributed computing are DCE (Distributed Computing Envi-
ronment) and CORBA (Common Object Request Broker Architecure) from the OMG (Object Management
Group). Both rely strongly on the semantics of typical RPC. While RPC is a large component of DCE, it is
not mentioned at all in CORBA. Rather, CORBA specifies the semantics of method invocation on objects,
which match those of common RPC implementations. One could certainly build a CORBA compliant
system with stronger failure semantics, but applications wishing to interoperate with other CORBA systems
(a primary goal of CORBA) would not be able take advantage of this for improved reliability.

The Chorus microkemel provides "reliable" IPC only for its version of RPC. Asynchronous Chorus IPC
is unreliable (that is no non-local errors are reported). Chorus RPC has the same at-most-once failure
semantics as other common implementations of RPC. Similarly, timeout is the primary means of failure
detection, and consistency is provided on a per call basis. As in the above, Chorus RPC can be classified a.;
inaccurate, providing liveness but not safety with respect to failure detection.

4 Stronger consistency models

The situation seen in the previous section, although common, is not universal. This section considers two
modern distributed systems, the Mach operating system and the Isis toolkit. We then point to a number of
other distributed systems with consistency models similar to Mach and/or Isis.
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4.1 Failure detection and consistency issues in Mach

The Mach microkernel from Carnegie Mellon University offers a strong notion of failure consistency. Mach

IPC employs a port death notification mechanism that enables the application to reliably determine if the

holder of a pcrt receive-right has failed; in addition it has a notifications for events such as "no more

senders" (indicating that outstanding send-rights to a port have been destroyed). Mach also provides strong

guarantees for message delivery. To implement this behavior, Mach detects the failure of a machine (and
hence all of its tasks) through one of two methods. In the first method the applications learn of port deaths

on a machine only after the machine recovers. While the machine remains incommunicado, applications

trying to communicate with it simply wait. The second method requires that an operator intervene, issuing
a command that declares the machine as having crashed, spawning port death and other notifications. Mach
thus provides an accurate mechanism for determining the health of a process, but does so at the risk of
delaying the death notification indefinitely. This form of failure detection is accurate and safe, but not live.

Mach achieves stabilization consistency, in the sense of Section 2: there is no guarantee that two processes
will view the same events in the same order, but if the system remains quiet for sufficiently long, all processes

will eventually have consistent views of the overall composition of the network.

4.2 Failure detection and consistency issues in Isis

The Isis system developed at Cornell University also provides a strong notion of failure consistency but uses
a different approach. Isis makes use of a failure detector service built using a group membership protocol
(GMP) as described in [16]. This service is replicated and fault tolerant and determines when applications
can be notified that other applications may be considered as having failed. This system guarantees that if one
process observes failure through the Isis communication subsystem, then all processes in the same partition

will also observe the failure. Of course, Isis can't perform the imposs.ble and it is impossiblc to guarantee
consensus in an asynchronous system where even one crash failure can occur[ 121. In particular, the failure

detection service uses timeouts and hints from the operating system and other processes to determine when a

machine has crashed. Because transient communication disruptions and other temporary problems (like an
unresponsive file server) can mimic failures, the failure detector can be fooled and declare a hea'thy process
dead. The approach however, is such that all processes would consider such a process dead, because they
listen to the failure detector and sever connections as appropriate.

To resume communication with healthy applications, a process declared as faulty in this way would need to

explicitly rejoin the system. In this manner, "zombie" processes are prevented from somehow interfering

with the operational part of the system.

In the case of a network partition, one of two outcomes can arise, depending on how the failure detector

service is configured. In the default configuration, those processes in a partition with a minority of processes
will be severed from the system; they will be unable to reconnect until the partition is eliminated. The worst
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case for this scenario occurs when only minority partitions exist: all processes will become "disconnected".

Because this will shut down the entire application, a second configuration is also possible, under which

processes i, a minority partition are notified that a partition may have occured, but are then permitted to

continue running in a state that is now known to be potentially disconnected from the majority of processes.

Some applications can continue to operate in a partitioned environment, others cannot

The approach achieves piece-wise consistency, providing both safety and liveness, but it gains liveness by

sacrificing accuracy. That is, all processes see the same sequence of events, and each new event is reported

along a consistent cut, but in some situations an otherwise healthy process may be declared faulty.

4.3 Systems with similar properties

At this point we ,ave classified failure detection semantics with respect to accuracy of failure detections,

safety and liveness. Notice that the vast majority of systems provide liveness guarantees over accuracy and

safety. It is worth looking at some other novel systems that provide safety guarantees in their failure reporting
semantics. We briefly examine VAXclusters, Amoeba, Tandem NonStop, Ladin's Lazy Replication. and

Transis.

Digital Equipment Corporation's VAXcluster system uses a connection manager to provide a mechanism

for failure detection and recovery of nodes in a cluster [13]. The connection manager is a membership

service that runs on all of the nodes in a cluster and manages virtual circuits between each member. A

quorum voting scheme arbitrates the membership during partions of the cluster; weights can be assigned to

the nodes to bias the system in favor of including certain nodes in any majority partition. During transient

communication f.lures it is possible that the membership service will deem a node as having failed, when

in fact it may have simply been overloaded. In this case, upon reestablishing its connection w ith the cluster.

the node is told to reboot.2 In this manner consistency with the membership service's prior decision is

maintained. Like Isis, VAXclusters failure detection is safe and live but not accurate.

The Amoeba operating system uses i closely related approach to achieve failure consistency for data

replication within a segment (a portion of the network not subject to partitions) [19). In this system a

boot service detects containe- crashes (a container is simply a machine with somt stable storage) through

low-level polling. If the container does not respond to the polling, the boot service will attempt to reboot

tht machine. If after this, the machine still does not resp,3nd to polling, then the boot service wili ensure

that it remains unavailable by disconnecting it from the network, turning it off via an elecnonic switch, or

by using some other means at its disposal. The Ameoba system uses special hardware that is suited for this

purpose. The boot service thus provides failure consistency by forcing observed failures to correspond to

real failures.
2The VAXcluster system makes use of the low-level VMS Systems Communication Architecture (SCA) to provide these services

Unfortunately. this architecture is not directly compatible with the OSI standard, or the Internet protocol suite.
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The ability of the forced reboot approach to tolerate complex network partitioning failures represents a

possible area for future theoretical study. If a network might experience arbitrary failures and recoveries

including partition, the boot-service itself will need to be implemented as a replicated distributed server.

This suggests that to solve the consistency problem at the application level, we mpy nc:z! lo solve it within

the boot server first. Because such a system is asynchronous, results such as FLP limit the extent to which

this can be done.

Tandem Computers, Inc. uses a process pair scheme in their NonStop T Operating system. This fault

tolerance method transparently handles the recovery of a single hardware or software component failure

[4]. The system is based on redundant hardware and a messaging infrastructure that is robust to single

failures, and is responsible for declaring a path dead. This decision is sender-based and is made upon

the repeated inability to receive acknowledgements. In the Tandem system each message is individually

acknowledged and is received in the same order as it was sent. While a Tandem NonStop System can consist

of a large number of processors, the fault tolerance of applications in based on a primary-backup approach

that involves only two-processors at a time. The occurrence of multiple observered failures (whether real

or not), can lead to an inconsistent system. The scheme is thus safe and live up to a single failure, but not

safe for multiple failures. Accuracy of the solution depends on the correct function of low-level polling

mechanisms and hardware.

The Lazy Replication scheme of [141 uses a 3-phase group (view) membership protocol to react to the

observed failure of the primary for the global and server ordered updates in their system. This system

is not used to provide reliable communication with individual machines and does not present failures to

the application, rather the mechanism is used to reliably communicate with fault-tolerant services (abstract

data types), the goal being to provide the service of the data type despite failures of individual replicas.

Like Isis, this system provides safe and live fault-tolerant services, but may fail to utilize servers that the

membership protocol has deemed as dead. Accuracy appears not to be an issue in this approach. When a

faulty node recovers, it is brought up to date by a replay of logged update records. A similar approach is

used in Peterson's Psvnc system [ 151.

Transis [2, 31 uses an inaccurate, safe, live membership protocol to provide consistent views of configuration

sets within broadcast domains. This system guarantees that failure events are observed consistently within

each configuration set. Like Isis, Transis provides a communication service which is responsible for

providing reliability, atonicity, and message delivery ordering. In the event of network partitions, or

disconnections, a given configuration set can split into two or more pieces: the consistency properties of the

system are defined on a per-partition basis. Transis retains consistent membership views within any single

partition, and provides for the merging of partitions upon reestablishment of normal communications.

This review is not intended to be complete, but rather to illustrate our contention that the issues of consistency

and liveness in failure reporting are important ones that have been treated through a suprisingly varied set

of mechanisms,
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5 Implementing consistent failure-reporting

In this section we summarize the major approachs to implementing consistent failure reporting used in current

systems. The exact degree of consistency will depend on details of the implementation not considered here,

and so we will not comment on t1s. kiowever, we do note that all of these approaches can be distinguished

from failure reporting schemes that make no attempt to be consistent at all.

Wait for restart. This is the approach used in the Mach system; it achieves consistency and accuracy
in failure reporting by waiting for the failed machine to recover and tell the world that it died (or

by trusting an operator to declare the machine dead). This approach sacrifices liveness, which can
represent a considerable drawback to applications that require timely response 'nom a service, or that

need to operate themselves automatically under conditions in which no operator can be counted upon.
On the other hand it is extremely simple to implement.

Wait for restart is accurate and safe, but not live.

Forced reboot. This is the approach used in VAXclusters and Ameoba: if a machine is declared faulty, a

mechanism is used to force it to reboot, thus preventing it from interacting with machines that have
taken actions that only make sense under the assumption that the machine in question has failed.

Forced reboot is inaccurate (although self-fulfilling!), but is safe and live. However, it may require

special hardware support.

Dynamic consensus - GMP. The third option is to use the sort of membership agreement mechanism seen
in systems like Isis, Transis and IBM's HAS. (We believe that the first use of a membership mechanism
was in a reliable broadcast protocol by Chang and Maxemchuck, for broadcast networks 1101). A

group membership protocol is used to maintain agreement on the system membership, and is the sole
trusted agent - an oracle - within the system insofar as failure and recovery decisions are concerned.

The consistency and liveness properties of the GMP protocol will determine the consistency and
liveness characteristics of the applications built over such a layer. Often, in this approach, the
application is said to "assume a failstop execution model", referring to a model explored by Schlicting

and Schneider [1171 in which processes fail by crashing in a detectable manner.

Dyniamic consensus protocols can be designed to be accurate, in which case it they are safe but not
live, or to sacrifice accuracy in favor of a solution that is safe and live, but in which transient problems

can trigger inaccurate failure notifications,

6 When is failure-reporting consistency important?

The first parts of this p,• er have argued that reliable communication systems can be broadly classified into
two categories, depending upon the degree to which failures are consistently reported to users of the system,
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with a secondary issue involving a tradeoff between liveness and accuracy. The question this leaves open

concerns how to recognize applications that need consistency.

This ion considers some examples of systems with non-trivial distributed properties, in which liveness

of the system as a whole is linked to taking one action if some message is received, and a different action if

failure occurs instead. We argue that in most cases, systems having this structure either require consistent

failure reporting, or require some sort of application-level agreement protocol by which the application

programs can overcome inconsistencies originating in the lower level communication mechanisms.

For example, the Mach IPC model, described earlier, requires that an application program holding a port be

notified when the last holders of send-rights to that port terminate. Mach also requires that IPC be reliable

unless one endpoint of a communication interaction fails, and in particular that send-rights become dead if

and only if the holder of the corresponding receive-right has failed, or the receive-right has been destroyed.

Further, Mach needs to provide these properties despite dynamicism, such as the migration of receive-rights

from node to node. For example, suppose that process a holds a send-right on a port currently owned by

process b. Process b transfers the right to process c and, shortly after, the machine on which b is running

crashes. Process a now attempts to transmit to the port. Mach IPC is explicit in guaranteeing that a will

succeed in sending its message (to c), even though the machine on which a last knew the right to reside is no

longer operational. If a is instead informed that it holds a dead right, application bugs might be triggered.

Mach IPC thus offers a distributed reliability guarantee that requires consistent handling of failures and

failure notifications. One can generalize the Mach requirement to a form of system-wide invariant, namely

that the "reference counts" associated with receive-rights correspond to the number of send-rights on the

port, subject of course to some delay in cases where the holder of a send-right has failed but this has not yet

been detected.

The idea of maintaining accurate reference counts for distributed objects is also discussed in [18]. In fact,

the Mach problem is a specific instance of a more general distributed garbage collection problem seen in

many distributed object oriented systems. In this generalization, one wishes to garbage collect any passive

(data) objects for which no references remain. Object references can be passed around in the system, so

that detecting this condition is not necessarily trivial, an issue further complicated by failures. Inconsistent

observation of failures could result in lost references and trigger an inappropriate round of garbage collection.

[18] discusses the need for an accurate oracde, capable of detecting and reporting failures. The relationship

between such an oracle and the GMP approach should be clear: given a communication layer that reports

failures in a consistent manner, protocols to maintain reference counts on ports or objects, and to transfer

references from one machine to another, can be designed and implemented in a fairly straightforward

manner. Lacking consistency, the development of such a solution is much harder.

A similar pattern is seen in many of the tools within the Isis toolkit. For example, Isis has a generalized

primary-backup tool called the coordinator-cohort tool. In a normal primary-backup system, one builds

pairs of processes; the primary handles all requests and the backup sees some form of trace of incoming
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requests and replies to them, which it can use to reconstruct the state of the primary after a crash [81. The

Isis tool operates in a similar way, but within groups of processes. For each incoming request, a process is

designated to be the "coordinator" (primary) for the handling of that request. Unlike for a normal primary-

backup scheme, the role of being primary can be load-shared within the group, so that concurrent requests

can receive different coordinators, keeping the whole group busy. For a given request, the non-coordinator

processes are ranked and called "cohorts"; they will take over as coordinator in rank order if the coordinator

crashes before completing the execution of the request (it signifies completion by replying to the caller that

issued the request).

The coordinator-cohort scheme relies upon the members of the process group having consistent information

about the group. They need to know that the incoming message was received by all members. Otherwise,
a cohort might monitor a coordinator indefinitely, and yet the coordinator may not have received the
corresponding request. They need to have the same rankings of group members. Otherwise, a request might

end up with multiple coordinators, or no coordinator. And, they require that cohorts be notified of failures
in a timely and uniform manner. Otherwise, again, a request might end up with multiple coordinators, or

none. As we reported in [6], a tool having these properties can be layered cver a communication layer
with multicast protocols that report failures in a consistent manner. Inconsistent failure reporting makes the
development of such a tool problematic.

Other distributed computing problems that require consistent failure reporting include:

" Group communication and reliable multicast. If failure reporting is inaccurate, an operational process
may never be sent a copy of a message that other processes received.

" Synchronization. If a process fails, one may need to "break" locks it held, so that (after cleanup)
other processes can make progress. If failures are reported inconsistently, locks may be broken

inappropriately.

" Replicated data. Updates to replicated data need to reach all processes holding copies. Inconsistent
failure reporting could leave some processes holding stale replicas.

" Parallel database search. If the search of a database is subdivided among a set of processes, inconsistent
failure reporting could result in parts of the database not being searched, or some parts being searched

multiple times.

These sorts of problems, which are typical of problems for which Isis and Mach are often used, would be

difficult or impossible to solve in settings that report failures inconsistently. We believe that inconsistency

of failure reporting stands out as a major obstacle to building complex distributed software on platforms
such as UNIX, even under next-generation programming environments such as CORBA.

Although this paper will not attempt to address the question of which type of consistency these problems
need, we do note that a wider variety of problems has been solved using the "piece-wise" consistency model
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than with a simple stabilization model. In particular, while all of the problems cited above correspond to
"tools" available in the Isis system, we are not aware of any comparable tools built using a stabilization
consistency model. As noted in Section 2, detailed treatment of this issue would require more formalism

than we felt would be appropriate here.

6.1 Transactional consistency

Until now, we have avoided discussion of the transactional approach to distributed computing and fault-
tolerance, which employs a very different approach to reliability and consistency. In these types of systems,
consistency is defined through reference to a transactional serializability and atomicity model, which in turn
reflects the manner in which typical database applications are structured. A good review of this work can

be found in [5].

Although transactional consistency is extremely important, we focused on non-transactional applications
intentionally. There is a large body of existing, non-transactional code and systems, and the majority of
new distributed applications and services use non-transactional execution models. These systems need to
be reliable too, justifying the sort of analysis and argument presented above.

It is interesting to note that consistency of failure reporting does find echoes in transactional settings.
For example, in [5] there is a discussion of failure-serialization graphs, basically showing that unless
transactions have consistent perceptions of the status, operational or failed, of replicas of objects, transactions
on replicated data may not be correctly serializable. Thus, although our consistency model is simpler, the
approach we favor is not particularly radical.

6.2 Real-time membership mechanisms

A second topic we have not addressed here concerns protocols for maintaining membership information in
which the focus is on liveness but not safety. For example, Cristan proposed a real-time system membership
service in [11], which manages information about membership in partitions, merging partitions when the
opportunity arises. Relating the type of consistency seen in this class of systems to the type seen in our
work represents an interesting open problem.

7 Conclusions

We have seen that consistency in failure reporting can be a useful, even necessary, property in reliable
distributed systems. Obtaining such consistency is neither particularly costly nor overwhelmingly difficult,

and there are many examples of systems that report failures consistently.
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Unfortunately, modern computing systens treat failure reporting as an application-specific problem, forcing

users to live in a world of inconsistent failure reporting. This might be characterized as an application of
the "end-to-end" philosophy to the failure reporting problem. (Under the end-to-end approach, low levels
of a communication system provide minimal guarantees, making applications responsible for introducing

mechanisms to recover from failures). We question the appropriateness of this philosophy in the case of
failure reporting. Since the solutions either involve some form of consensus on failure, or use some type of
trusted system-wide service, it is not clear how an application developer could introduce consistency in a

setting where the operating system does not already provide for it.

Standards bodies have also overlooked this issue: no communications standard today requires consistency in
failure reporting. Indeed, no standard even provides for the addition of consistency-preserving mechanisms.

Inconsistent failure reporting is one of the major barriers to progress in developing highly reliable, self-
managed, distributed software systems and applications. It is ironic that the very trend towards standard-
ization that has made it practical to entertain building such systems may be rendering it nearly impossible
to do so! The technology for solving the problem is at hand, and if only its importance were more
widely appreciated, we believe that a major barrier to distributed application development could be rapidly

eliminated.
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